open import Algebra
import Algebra.Operations
open import Relation.Nullary
module Algebra.RingSolver.Natural-coefficients
{r₁ r₂}
(R : CommutativeSemiring r₁ r₂)
(dec : let open CommutativeSemiring R
open Algebra.Operations semiring in
∀ m n → Dec (m × 1# ≈ n × 1#)) where
import Algebra.RingSolver
open import Algebra.RingSolver.AlmostCommutativeRing
open import Data.Nat as ℕ
open import Data.Product using (module Σ)
open import Function
import Relation.Binary.EqReasoning
import Relation.Nullary.Decidable as Dec
open CommutativeSemiring R
open Algebra.Operations semiring
open Relation.Binary.EqReasoning setoid
private
ℕ-ring : RawRing _
ℕ-ring = record
{ Carrier = ℕ
; _+_ = ℕ._+_
; _*_ = ℕ._*_
; -_ = id
; 0# = 0
; 1# = 1
}
homomorphism :
ℕ-ring -Raw-AlmostCommutative⟶ fromCommutativeSemiring R
homomorphism = record
{ ⟦_⟧ = λ n → n ×′ 1#
; +-homo = ×′-homo-+ 1#
; *-homo = ×′1-homo-*
; -‿homo = λ _ → refl
; 0-homo = refl
; 1-homo = refl
}
dec′ : ∀ m n → Dec (m ×′ 1# ≈ n ×′ 1#)
dec′ m n = Dec.map′ to from (dec m n)
where
to : m × 1# ≈ n × 1# → m ×′ 1# ≈ n ×′ 1#
to m≈n = begin
m ×′ 1# ≈⟨ sym $ ×≈×′ m 1# ⟩
m × 1# ≈⟨ m≈n ⟩
n × 1# ≈⟨ ×≈×′ n 1# ⟩
n ×′ 1# ∎
from : m ×′ 1# ≈ n ×′ 1# → m × 1# ≈ n × 1#
from m≈n = begin
m × 1# ≈⟨ ×≈×′ m 1# ⟩
m ×′ 1# ≈⟨ m≈n ⟩
n ×′ 1# ≈⟨ sym $ ×≈×′ n 1# ⟩
n × 1# ∎
open Algebra.RingSolver _ _ homomorphism dec′ public