{-# OPTIONS --without-K --copatterns #-}

open import Type
open import Data.Bit
open import Data.Maybe
open import Data.Product
open import Data.One
open import Control.Strategy renaming (run to runStrategy; map to mapStrategy)

open import Function

open import Relation.Binary.PropositionalEquality

import Game.IND-CPA-dagger
import Game.IND-CPA

module Game.Transformation.CPAd-CPA
  (PubKey    : )
  (SecKey    : )
  (Message   : )
  (CipherText : )

  -- randomness supply for, encryption, key-generation, adversary, adversary state
  (Rₑ Rₖ Rₐ : )
  (KeyGen : Rₖ  PubKey × SecKey)
  (Enc    : PubKey  Message  Rₑ  CipherText)
  (Dec    : SecKey  CipherText  Message)
  
where

module CPA† = Game.IND-CPA-dagger PubKey SecKey Message CipherText Rₑ Rₖ Rₐ 𝟙 KeyGen Enc
module CPA  = Game.IND-CPA        PubKey SecKey Message CipherText Rₑ Rₖ Rₐ 𝟙 KeyGen Enc

R-transform : CPA†.R  CPA.R
R-transform (rₐ , rₖ , rₑ , _ , _) = rₐ , rₖ , rₑ , _

module _ (A : CPA.Adversary) where
  open CPA†.Adversary
  module A = CPA.Adversary A

  A† : CPA†.Adversary
  m  A† = A.m
  b′ A† rₐ pk c₀ c₁ = A.b′ rₐ pk c₀

  lemma :  b t r
           CPA.EXP  b   A  (R-transform r)
           CPA†.EXP b t A† r
  lemma _ _ _ = refl

  -- If we are able to do the transformation, then we get the same advantage
  correct :  b r
             CPA.EXP  b A          (R-transform r)
             CPA†.EXP b (not b) A† r
  correct _ _ = refl

-- -}