------------------------------------------------------------------------
-- The Agda standard library
--
-- Heterogeneous equality
------------------------------------------------------------------------

module Relation.Binary.HeterogeneousEquality where

open import Data.Product
open import Function
open import Function.Inverse using (Inverse)
open import Level
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.Consequences
open import Relation.Binary.Indexed as I using (_at_)
open import Relation.Binary.PropositionalEquality as P using (_≡_; refl)

import Relation.Binary.HeterogeneousEquality.Core as Core

------------------------------------------------------------------------
-- Heterogeneous equality

infix 4 _≇_

open Core public using (_≅_; refl)

-- Nonequality.

_≇_ :  {} {A : Set }  A  {B : Set }  B  Set 
x  y = ¬ x  y

------------------------------------------------------------------------
-- Conversion

≡-to-≅ :  {a} {A : Set a} {x y : A}  x  y  x  y
≡-to-≅ refl = refl

open Core public using (≅-to-≡)

------------------------------------------------------------------------
-- Some properties

reflexive :  {a} {A : Set a}  _⇒_ {A = A} _≡_  x y  x  y)
reflexive refl = refl

sym :  {} {A B : Set } {x : A} {y : B}  x  y  y  x
sym refl = refl

trans :  {} {A B C : Set } {x : A} {y : B} {z : C} 
        x  y  y  z  x  z
trans refl eq = eq

subst :  {a} {A : Set a} {p}  Substitutive {A = A}  x y  x  y) p
subst P refl p = p

subst₂ :  {a b p} {A : Set a} {B : Set b} (P : A  B  Set p) 
          {x₁ x₂ y₁ y₂}  x₁  x₂  y₁  y₂  P x₁ y₁  P x₂ y₂
subst₂ P refl refl p = p

subst-removable :  {a p} {A : Set a}
                  (P : A  Set p) {x y} (eq : x  y) z 
                  subst P eq z  z
subst-removable P refl z = refl

≡-subst-removable :  {a p} {A : Set a}
                    (P : A  Set p) {x y} (eq : x  y) z 
                    P.subst P eq z  z
≡-subst-removable P refl z = refl

cong :  {a b} {A : Set a} {B : A  Set b} {x y}
       (f : (x : A)  B x)  x  y  f x  f y
cong f refl = refl

cong₂ :  {a b c} {A : Set a} {B : A  Set b} {C :  x  B x  Set c}
          {x y u v}
        (f : (x : A) (y : B x)  C x y)  x  y  u  v  f x u  f y v
cong₂ f refl refl = refl

resp₂ :  {a } {A : Set a} ( : Rel A )   Respects₂  x y  x  y)
resp₂ _∼_ = subst⟶resp₂ _∼_ subst

proof-irrelevance :  {} {A B : Set } {x : A} {y : B}
                    (p q : x  y)  p  q
proof-irrelevance refl refl = refl

isEquivalence :  {a} {A : Set a} 
                IsEquivalence {A = A}  x y  x  y)
isEquivalence = record
  { refl  = refl
  ; sym   = sym
  ; trans = trans
  }

setoid :  {a}  Set a  Setoid _ _
setoid A = record
  { Carrier       = A
  ; _≈_           = λ x y  x  y
  ; isEquivalence = isEquivalence
  }

indexedSetoid :  {a b} {A : Set a}  (A  Set b)  I.Setoid A _ _
indexedSetoid B = record
  { Carrier       = B
  ; _≈_           = λ x y  x  y
  ; isEquivalence = record
    { refl  = refl
    ; sym   = sym
    ; trans = trans
    }
  }

≡↔≅ :  {a b} {A : Set a} (B : A  Set b) {x : A} 
      Inverse (P.setoid (B x)) (indexedSetoid B at x)
≡↔≅ B = record
  { to         = record { _⟨$⟩_ = id; cong = ≡-to-≅ }
  ; from       = record { _⟨$⟩_ = id; cong = ≅-to-≡ }
  ; inverse-of = record
    { left-inverse-of  = λ _  refl
    ; right-inverse-of = λ _  refl
    }
  }

decSetoid :  {a} {A : Set a} 
            Decidable {A = A} {B = A}  x y  x  y) 
            DecSetoid _ _
decSetoid dec = record
  { _≈_              = λ x y  x  y
  ; isDecEquivalence = record
      { isEquivalence = isEquivalence
      ; _≟_           = dec
      }
  }

isPreorder :  {a} {A : Set a} 
             IsPreorder {A = A}  x y  x  y)  x y  x  y)
isPreorder = record
  { isEquivalence = isEquivalence
  ; reflexive     = id
  ; trans         = trans
  }

isPreorder-≡ :  {a} {A : Set a} 
               IsPreorder {A = A} _≡_  x y  x  y)
isPreorder-≡ = record
  { isEquivalence = P.isEquivalence
  ; reflexive     = reflexive
  ; trans         = trans
  }

preorder :  {a}  Set a  Preorder _ _ _
preorder A = record
  { Carrier    = A
  ; _≈_        = _≡_
  ; _∼_        = λ x y  x  y
  ; isPreorder = isPreorder-≡
  }

------------------------------------------------------------------------
-- Convenient syntax for equational reasoning

module ≅-Reasoning where

  -- The code in Relation.Binary.EqReasoning cannot handle
  -- heterogeneous equalities, hence the code duplication here.

  infix  4 _IsRelatedTo_
  infix  2 _∎
  infixr 2 _≅⟨_⟩_ _≡⟨_⟩_ _≡⟨⟩_
  infix  1 begin_

  data _IsRelatedTo_ {} {A : Set } (x : A) {B : Set } (y : B) :
                     Set  where
    relTo : (x≅y : x  y)  x IsRelatedTo y

  begin_ :  {} {A : Set } {x : A} {B} {y : B} 
           x IsRelatedTo y  x  y
  begin relTo x≅y = x≅y

  _≅⟨_⟩_ :  {} {A : Set } (x : A) {B} {y : B} {C} {z : C} 
           x  y  y IsRelatedTo z  x IsRelatedTo z
  _ ≅⟨ x≅y  relTo y≅z = relTo (trans x≅y y≅z)

  _≡⟨_⟩_ :  {} {A : Set } (x : A) {y C} {z : C} 
           x  y  y IsRelatedTo z  x IsRelatedTo z
  _ ≡⟨ x≡y  relTo y≅z = relTo (trans (reflexive x≡y) y≅z)

  _≡⟨⟩_ :  {} {A : Set } (x : A) {B} {y : B} 
          x IsRelatedTo y  x IsRelatedTo y
  _ ≡⟨⟩ x≅y = x≅y

  _∎ :  {a} {A : Set a} (x : A)  x IsRelatedTo x
  _∎ _ = relTo refl

------------------------------------------------------------------------
-- Functional extensionality

-- A form of functional extensionality for _≅_.

Extensionality : (a b : Level)  Set _
Extensionality a b =
  {A : Set a} {B₁ B₂ : A  Set b}
  {f₁ : (x : A)  B₁ x} {f₂ : (x : A)  B₂ x} 
  (∀ x  B₁ x  B₂ x)  (∀ x  f₁ x  f₂ x)  f₁  f₂

-- This form of extensionality follows from extensionality for _≡_.

≡-ext-to-≅-ext :  {ℓ₁ ℓ₂} 
  P.Extensionality ℓ₁ (suc ℓ₂)  Extensionality ℓ₁ ℓ₂
≡-ext-to-≅-ext           ext B₁≡B₂ f₁≅f₂ with ext B₁≡B₂
≡-ext-to-≅-ext {ℓ₁} {ℓ₂} ext B₁≡B₂ f₁≅f₂ | P.refl =
  ≡-to-≅ $ ext′ (≅-to-≡  f₁≅f₂)
  where
  ext′ : P.Extensionality ℓ₁ ℓ₂
  ext′ = P.extensionality-for-lower-levels ℓ₁ (suc ℓ₂) ext