{-# OPTIONS --without-K #-}
open import Function.NP
open import Type
open import Level.NP
open import Data.Product.NP using (Σ; _×_; _,_) renaming (proj₁ to fst)
open import Data.One using (𝟙)
open import Relation.Binary.PropositionalEquality.NP using (_≡_; !_; _∙_; refl; ap; coe; coe!)
open import Function.Extensionality
open import HoTT
open import Data.ShapePolymorphism
open Equivalences
open import Type
module Control.Protocol.InOut where
data InOut : ★ where
In Out : InOut
dualᴵᴼ : InOut → InOut
dualᴵᴼ In = Out
dualᴵᴼ Out = In
dualᴵᴼ-involutive : ∀ io → dualᴵᴼ (dualᴵᴼ io) ≡ io
dualᴵᴼ-involutive In = refl
dualᴵᴼ-involutive Out = refl
dualᴵᴼ-equiv : Is-equiv dualᴵᴼ
dualᴵᴼ-equiv = self-inv-is-equiv dualᴵᴼ-involutive
dualᴵᴼ-inj : ∀ {x y} → dualᴵᴼ x ≡ dualᴵᴼ y → x ≡ y
dualᴵᴼ-inj = Is-equiv.injective dualᴵᴼ-equiv
⟦_⟧ᴵᴼ : InOut → ∀{ℓ}(M : ★_ ℓ)(P : M → ★_ ℓ) → ★_ ℓ
⟦_⟧ᴵᴼ In = Π
⟦_⟧ᴵᴼ Out = Σ