{-# OPTIONS --without-K #-}
open import Type using (; ★_)
open import Data.Maybe.NP using (_→?_; module M?; just; maybe′; nothing; map?)
open import Data.Nat using (zero; suc)
open import Data.One using (𝟙)
open import Data.Char.NP renaming (_==_ to _==ᶜ_)
open import Data.List as L using (List; []; _∷_; null; filter)
open import Data.Vec using (Vec; []; _∷_)
open import Data.BoundedVec using (BoundedVec) renaming ([] to []ᵇᵛ; _∷_ to _∷ᵇᵛ_)
open import Data.Product.NP hiding (map)
open import Data.Bool using (Bool; if_then_else_; false)
open import Data.String using (String) renaming (toList to S▹L; fromList to L▹S)
open import Function.NP
open import Level.NP

module Text.Parser where

open M?  using () renaming (_=<<_ to _=<<?_; _⊛_ to _⊛?_; join to join?)

Parser :   
Parser A = List Char →? (A × List Char)

pure :  {A}  A  Parser A
pure a s = just (a , s)

infixr 3 _⟨|⟩_
_⟨|⟩_ :  {A}  (f g : Parser A)  Parser A
_⟨|⟩_ f g s = maybe′ just (g s) $ f s

empty :  {A}  Parser A
empty _ = nothing

sat : (Char  Bool)  Parser Char
sat pred (x  xs) = (if pred x then pure x else empty) xs
sat _    []       = nothing

eof : Parser 𝟙
eof s = if null s then pure _ [] else empty []

-- The remaning input is dropped, you may want to first
-- combine your parser `p' with `eof': `p <* eof'
runParser :  {A}  Parser A  List Char →? A
runParser p s = map? proj₁ (p s)

runParserˢ :  {A}  Parser A  String →? A
runParserˢ p = runParser p  S▹L

infixr 0 _>>=_
_>>=_ :  {A B}  Parser A  (A  Parser B)  Parser B
_>>=_ pa f = maybe′ (uncurry f) nothing  pa

infixl 0 _=<<_
_=<<_ :  {A B}  (A  Parser B)  Parser A  Parser B
_=<<_ f pa = pa >>= f

join :  {A}  Parser (Parser A)  Parser A
join = _=<<_ id

map :  {A B}  (A  B)  Parser A  Parser B
map f pa = pa >>= pure  f

infixl 4 _⊛_ _*>_ _<*_
_⊛_ :  {A B}  Parser (A  B)  Parser A  Parser B
_⊛_ pf pa = pf >>= λ f  pa >>= λ a  pure (f a)

⟪_·_⟫ :  {A B}  (A  B)  Parser A  Parser B
 f · x  = map f x

⟪_·_·_⟫ :  {A B C} 
            (A  B  C)  Parser A  Parser B  Parser C
 f · x · y  = map f x  y

⟪_·_·_·_⟫ :  {A B C D}  (A  B  C  D)
             Parser A  Parser B  Parser C  Parser D
 f · x · y · z  = map f x  y  z

_*>_ :  {A B}  Parser A  Parser B  Parser B
p₁ *> p₂ = p₁ >>= const p₂

_<*_ :  {A B}  Parser A  Parser B  Parser A
p₁ <* p₂ = p₁ >>= λ x  p₂ *> pure x

mapM :  {a} {A : ★_ a} {B}  (A  Parser B)  List A  Parser (List B)
mapM f []       = pure []
mapM f (x  xs) =  _∷_ · f x · mapM f xs 

mapMvoid :  {a} {A : ★_ a} {B}  (A  Parser B)  List A  Parser 𝟙
mapMvoid f []       = pure _
mapMvoid f (x  xs) = f x *> mapMvoid f xs

choices :  {A}  List (Parser A)  Parser A
choices = L.foldr _⟨|⟩_ empty

vec :  {A} n  Parser A  Parser (Vec A n)
vec zero    p = pure []
vec (suc n) p =  _∷_ · p · vec n p 

-- These are producing bounded vectors mainly for termination
-- reasons.
manyBV :  {A} n  Parser A  Parser (BoundedVec A n)
someBV :  {A} n  Parser A  Parser (BoundedVec A (suc n))

manyBV 0       _ = empty
manyBV (suc n) p = someBV n p ⟨|⟩ pure []ᵇᵛ

someBV n p =  _∷ᵇᵛ_ · p · manyBV n p 

many :  {A} n  Parser A  Parser (List A)
some :  {A} n  Parser A  Parser (List A)

many 0       _ = empty
many (suc n) p = some n p ⟨|⟩ pure []

some n p =  _∷_ · p · many n p 

manySat : (Char  Bool)  Parser (List Char)
manySat p []       = pure [] []
manySat p (x  xs) = if p x then map? (first (_∷_ x)) (manySat p xs) else pure [] (x  xs)

manySatˢ : (Char  Bool)  Parser String
manySatˢ = map L▹S  manySat

someSat : (Char  Bool)  Parser (List Char)
someSat p = pure _∷_  sat p  manySat p

someSatˢ : (Char  Bool)  Parser String
someSatˢ = map L▹S  someSat

char : Char  Parser 𝟙
char c = sat (_==ᶜ_ c) *> pure _

string : String  Parser 𝟙
string = mapMvoid char  S▹L

oneOf : List Char  Parser Char
oneOf cs = sat  c  c `elem` cs)

oneOfˢ : String  Parser Char
oneOfˢ = oneOf  S▹L

noneOf : List Char  Parser Char
noneOf cs = sat  c  c `notElem` cs)

noneOfˢ : String  Parser Char
noneOfˢ = noneOf  S▹L

someOneOf : List Char  Parser (List Char)
someOneOf cs = someSat  c  c `elem` cs)

someOneOfˢ : String  Parser String
someOneOfˢ = map L▹S  someOneOf  S▹L

someNoneOf : List Char  Parser (List Char)
someNoneOf cs = someSat  c  c `notElem` cs)

someNoneOfˢ : String  Parser String
someNoneOfˢ = map L▹S  someNoneOf  S▹L

manyOneOf : List Char  Parser (List Char)
manyOneOf cs = manySat  c  c `elem` cs)

manyOneOfˢ : String  Parser String
manyOneOfˢ = map L▹S  manyOneOf  S▹L

manyNoneOf : List Char  Parser (List Char)
manyNoneOf cs = manySat  c  c `notElem` cs)

manyNoneOfˢ : String  Parser String
manyNoneOfˢ = map L▹S  manyNoneOf  S▹L

lookSat : (List Char  Bool)  Parser 𝟙
lookSat p xs = if p xs then just (_ , xs) else nothing

lookSatHead : (Char  Bool)  Parser 𝟙
lookSatHead pᶜ = lookSat p
    where p : List Char  Bool
          p (x  xs) = pᶜ x
          p []       = false

lookHeadNoneOf : List Char  Parser 𝟙
lookHeadNoneOf cs = lookSatHead  c  c `notElem` cs)

lookHeadNoneOfˢ : String  Parser 𝟙
lookHeadNoneOfˢ = lookHeadNoneOf  S▹L

lookHeadSomeOf : List Char  Parser 𝟙
lookHeadSomeOf cs = lookSatHead  c  c `elem` cs)

lookHeadSomeOfˢ : String  Parser 𝟙
lookHeadSomeOfˢ = lookHeadSomeOf  S▹L

module _ {A} where
    between :  {_V} (begin end : Parser _V)  Endo (Parser A)
    between begin end p = begin *> p <* end

    betweenᶜ : (begin end : Char)  Endo (Parser A)
    betweenᶜ begin end = between (char begin) (char end)

    betweenˢ : (begin end : String)  Endo (Parser A)
    betweenˢ begin end = between (string begin) (string end)

    parens   = betweenᶜ '(' ')'
    braces   = betweenᶜ '{' '}'
    brackets = betweenᶜ '[' ']'
    angles   = betweenᶜ '<' '>'
    oxford   = betweenᶜ '⟦' '⟧'