-- NOTE with-K
module bijection-syntax.Bijection-Fin where

  open import Type

  open import bijection-syntax.Bijection
  open import Function.NP hiding (Cmp)
  open import Relation.Binary.PropositionalEquality

  open import Data.Empty
  open import Data.Nat.NP
  open import Data.Two
  open import Data.Fin using (Fin ; zero ; suc ; fromℕ ; inject₁)
  open import Data.Vec hiding ([_])

  data `Syn :    where
    `id   :  {n}  `Syn n
    `swap :  {n}  `Syn (2 + n)
    `tail :  {n}  `Syn n  `Syn (1 + n)
    _`∘_  :  {n}  `Syn n  `Syn n  `Syn n

  `Rep = Fin

  `Ix = 

  `Tree :   `Ix  
  `Tree X = Vec X

  `fromFun :  {i X}  (`Rep i  X)  `Tree X i
  `fromFun = tabulate

  `toFun :  {i X}  `Tree X i  (`Rep i  X)
  `toFun T zero    = head T
  `toFun T (suc i) = `toFun (tail T) i

  `toFun∘fromFun :  {i X}(f : `Rep i  X)  f  `toFun (`fromFun f)
  `toFun∘fromFun f zero = refl
  `toFun∘fromFun f (suc i) = `toFun∘fromFun (f  suc) i

  fin-swap :  {n}  Endo (Fin (2 + n))
  fin-swap zero = suc zero
  fin-swap (suc zero) = zero
  fin-swap (suc (suc i)) = suc (suc i)

  fin-tail :  {n}  Endo (Fin n)  Endo (Fin (1 + n))
  fin-tail f zero = zero
  fin-tail f (suc i) = suc (f i)

  `evalArg :  {i}  `Syn i  Endo (`Rep i)
  `evalArg `id       = id
  `evalArg `swap     = fin-swap
  `evalArg (`tail f) = fin-tail (`evalArg f)
  `evalArg (S `∘ S₁) = `evalArg S  `evalArg S₁

  vec-swap :  {n}{X : }  Endo (Vec X (2 + n))
  vec-swap xs = head (tail xs)  head xs  tail (tail xs)

  vec-tail :  {n}{X : }  Endo (Vec X n)  Endo (Vec X (1 + n))
  vec-tail f xs = head xs  f (tail xs)

  `evalTree :  {i X}  `Syn i  Endo (`Tree X i)
  `evalTree `id       = id
  `evalTree `swap     = vec-swap
  `evalTree (`tail f) = vec-tail (`evalTree f)
  `evalTree (S `∘ S₁) = `evalTree S  `evalTree S₁

  `eval-proof :  {i X} S (T : `Tree X i)  `toFun T  `toFun (`evalTree S T)  `evalArg S
  `eval-proof `id       T i = refl
  `eval-proof `swap T zero = refl
  `eval-proof `swap T (suc zero) = refl
  `eval-proof `swap T (suc (suc i)) = refl
  `eval-proof (`tail S) T zero = refl
  `eval-proof (`tail S) T (suc i) = `eval-proof S (tail T) i
  `eval-proof (S `∘ S₁) T i rewrite
    `eval-proof S₁ T i |
    `eval-proof S (`evalTree S₁ T) (`evalArg S₁ i) = refl

  `inv :  {i}  Endo (`Syn i)
  `inv `id       = `id
  `inv `swap     = `swap
  `inv (`tail S) = `tail (`inv S)
  `inv (S `∘ S₁) = `inv S₁ `∘ `inv S

  `inv-proof :  {i}  (S : `Syn i)  `evalArg S  `evalArg (`inv S)  id
  `inv-proof `id x       = refl
  `inv-proof `swap zero          = refl
  `inv-proof `swap (suc zero)    = refl
  `inv-proof `swap (suc (suc x)) = refl
  `inv-proof (`tail S) zero = refl
  `inv-proof (`tail S) (suc x) rewrite `inv-proof S x = refl
  `inv-proof (S `∘ S₁) x rewrite 
    `inv-proof S₁ (`evalArg (`inv S) x) |
    `inv-proof S x = refl

  `RC :  {i}  Cmp (`Rep i)
  `RC zero zero = eq
  `RC zero (suc j) = lt
  `RC (suc i) zero = gt
  `RC (suc i) (suc j) = `RC i j

  insert :  {n X}  Cmp X  X  Vec X n  Vec X (1 + n)
  insert X-cmp x [] = x  []
  insert X-cmp x (x₁  xs) with X-cmp x x₁
  insert X-cmp x (x₁  xs) | lt = x  x₁  xs
  insert X-cmp x (x₁  xs) | eq = x  x₁  xs
  insert X-cmp x (x₁  xs) | gt = x₁  insert X-cmp x xs

  `sort :  {i X}  Cmp X  Endo (`Tree X i)
  `sort X-cmp [] = []
  `sort X-cmp (x  xs) = insert X-cmp x (`sort X-cmp xs)

  insert-syn :  {n X}  Cmp X  X  Vec X n  `Syn (1 + n)
  insert-syn X-cmp x [] = `id
  insert-syn X-cmp x (x₁  xs) with X-cmp x x₁
  insert-syn X-cmp x (x₁  xs) | lt = `id
  insert-syn X-cmp x (x₁  xs) | eq = `id
  insert-syn X-cmp x (x₁  xs) | gt = `tail (insert-syn X-cmp x xs) `∘ `swap

  `sort-syn :  {i X}  Cmp X  `Tree X i  `Syn i
  `sort-syn X-cmp []       = `id
  `sort-syn X-cmp (x  xs) = insert-syn X-cmp x (`sort X-cmp xs) `∘ `tail (`sort-syn X-cmp xs)

  insert-proof :  {n X}(X-cmp : Cmp X) x (T : Vec X n)  insert X-cmp x T  `evalTree (insert-syn X-cmp x T) (x  T)
  insert-proof X-cmp x [] = refl
  insert-proof X-cmp x (x₁  T) with X-cmp x x₁
  insert-proof X-cmp x (x₁  T) | lt = refl
  insert-proof X-cmp x (x₁  T) | eq = refl
  insert-proof X-cmp x (x₁  T) | gt rewrite insert-proof X-cmp x T = refl

  `sort-proof :  {i X}(X-cmp : Cmp X)(T : `Tree X i)  `sort X-cmp T  `evalTree (`sort-syn X-cmp T) T
  `sort-proof X-cmp [] = refl
  `sort-proof X-cmp (x  T) rewrite 
    sym (`sort-proof X-cmp T)= insert-proof X-cmp x (`sort X-cmp T)

  module Alt-Syn where

    data ``Syn :    where
      `id :  {n}  ``Syn n
      _`∘_ :  {n}  ``Syn n  ``Syn n  ``Syn n
      `swap :  {n} m  ``Syn (m + 2 + n)

    swap-fin :  {n} m  Endo (Fin (m + 2 + n))
    swap-fin zero zero = suc zero
    swap-fin zero (suc zero) = zero
    swap-fin zero (suc (suc i)) = suc (suc i)
    swap-fin (suc m) zero = zero
    swap-fin (suc m) (suc i) = suc (swap-fin m i)

    ``evalArg :  {n}  ``Syn n  Endo (`Rep n)
    ``evalArg `id       = id
    ``evalArg (S `∘ S₁) = ``evalArg S  ``evalArg S₁
    ``evalArg (`swap m) = swap-fin m

    _``∘_ :  {n}  ``Syn n  ``Syn n  ``Syn n
    `id ``∘ y = y
    (x `∘ x₁) ``∘ `id = x `∘ x₁
    (x `∘ x₁) ``∘ (y `∘ y₁) = x `∘ (x₁ `∘ (y `∘ y₁))
    (x `∘ x₁) ``∘ `swap m = x `∘ (x₁ ``∘ `swap m)
    `swap m ``∘ y = `swap m `∘ y

    ``tail :  {n}  ``Syn n  ``Syn (suc n)
    ``tail `id = `id
    ``tail (S `∘ S₁) = ``tail S ``∘ ``tail S₁
    ``tail (`swap m) = `swap (suc m)

    translate :  {n}  `Syn n  ``Syn n
    translate `id = `id
    translate `swap = `swap 0
    translate (`tail S) = ``tail (translate S)
    translate (S `∘ S₁) = translate S ``∘ translate S₁

    ``∘-p :  {n}(A B : ``Syn n)  ``evalArg (A ``∘ B)  ``evalArg (A `∘ B)
    ``∘-p `id B x = refl
    ``∘-p (A `∘ A₁) `id x = refl
    ``∘-p (A `∘ A₁) (B `∘ B₁) x = refl
    ``∘-p (A `∘ A₁) (`swap m) x rewrite ``∘-p A₁ (`swap m) x = refl
    ``∘-p (`swap m) B x = refl

    ``tail-p :  {n} (S : ``Syn n)  fin-tail (``evalArg S)  ``evalArg (``tail S)
    ``tail-p `id zero = refl
    ``tail-p `id (suc x) = refl
    ``tail-p (S `∘ S₁) zero rewrite ``∘-p (``tail S) (``tail S₁) zero
                                  | sym (``tail-p S₁ zero) = ``tail-p S zero
    ``tail-p (S `∘ S₁) (suc x) rewrite ``∘-p (``tail S) (``tail S₁) (suc x)
                                     | sym (``tail-p S₁ (suc x)) = ``tail-p S (suc (``evalArg S₁ x))
    ``tail-p (`swap m) zero = refl
    ``tail-p (`swap m) (suc x) = refl

    `eval`` :  {n} (S : `Syn n)  `evalArg S  ``evalArg (translate S)
    `eval`` `id       x = refl
    `eval`` `swap zero = refl
    `eval`` `swap (suc zero) = refl
    `eval`` `swap (suc (suc x)) = refl
    `eval`` (`tail S) zero = ``tail-p (translate S) zero
    `eval`` (`tail S) (suc x) rewrite `eval`` S x = ``tail-p (translate S) (suc x)
    `eval`` (S `∘ S₁) x rewrite ``∘-p (translate S) (translate S₁) x | sym (`eval`` S₁ x) | `eval`` S (`evalArg S₁ x) = refl


  data Fin-View :  {n}  Fin n   where
    max :  {n}  Fin-View (fromℕ n)
    inject :  {n}  (i : Fin n)  Fin-View (inject₁ i)

  data _≤F_ :  {n}  Fin n  Fin n   where
    z≤i : {n : }{i : Fin (suc n)}  zero ≤F i
    s≤s : {n : }{i j : Fin n}  i ≤F j  suc i ≤F suc j

  ≤F-refl :  {n} (x : Fin n)  x ≤F x
  ≤F-refl zero = z≤i
  ≤F-refl (suc i) = s≤s (≤F-refl i)

  _<F_ :  {n}  Fin n  Fin n  
  i <F j = suc i ≤F inject₁ j

  nsuc-inj :  {x y}  Data.Nat.NP.suc x  suc y  x  y
  nsuc-inj refl = refl

  suc-inj :  {n}{i j : Fin n}  Data.Fin.suc i  suc j  i  j
  suc-inj refl = refl 

  data Sorted {X}(XC : Cmp X) :  {l}  Vec X l    where
    []  : Sorted XC []
    sing :  x  Sorted XC (x  [])
    dbl-lt  :  {l} x y {xs : Vec X l}  lt  XC x y  Sorted XC (y  xs)  Sorted XC (x  y  xs)
    dbl-eq  :  {l} x {xs : Vec X l}  Sorted XC (x  xs)  Sorted XC (x  x  xs)

  opposite : Ord  Ord
  opposite lt = gt
  opposite eq = eq
  opposite gt = lt

  flip-RC :  {n}(x y : Fin n)  opposite (`RC x y)  `RC y x
  flip-RC zero zero = refl
  flip-RC zero (suc y) = refl
  flip-RC (suc x) zero = refl
  flip-RC (suc x) (suc y) = flip-RC x y

  eq=>≡ :  {i} (x y : Fin i)  eq  `RC x y  x  y
  eq=>≡ zero zero p = refl
  eq=>≡ zero (suc y) ()
  eq=>≡ (suc x) zero ()
  eq=>≡ (suc x) (suc y) p rewrite eq=>≡ x y p = refl

  insert-Sorted :  {n l}{V : Vec (Fin n) l}(x : Fin n)  Sorted {Fin n} `RC V  Sorted {Fin n} `RC (insert `RC x V)
  insert-Sorted x [] = sing x
  insert-Sorted x (sing x₁) with `RC x x₁ | dbl-lt {XC = `RC} x x₁ {[]} | eq=>≡ x x₁ | flip-RC x x₁
  insert-Sorted x (sing x₁) | lt | b | _ | _ = b refl (sing x₁)
  insert-Sorted x (sing x₁) | eq | _ | p | _ rewrite p refl = dbl-eq x₁ (sing x₁)
  insert-Sorted x (sing x₁) | gt | b | _ | l = dbl-lt x₁ x l (sing x)
  insert-Sorted x (dbl-lt y y' {xs} prf xs₁) with `RC x y | dbl-lt {XC = `RC} x y {y'  xs} | eq=>≡ x y | flip-RC x y
  insert-Sorted x (dbl-lt y y' prf xs₁) | lt | b | p | l₁ = b refl (dbl-lt y y' prf xs₁)
  insert-Sorted x (dbl-lt y y' prf xs₁) | eq | b | p | l₁ rewrite p refl = dbl-eq y (dbl-lt y y' prf xs₁)
  insert-Sorted x (dbl-lt y y' {xs} prf xs₁) | gt | b | p | l₁ with `RC x y' | insert-Sorted x xs₁
  insert-Sorted x (dbl-lt y y' prf xs₁) | gt | b | p | l₁ | lt | xs' = dbl-lt y x l₁ xs'
  insert-Sorted x (dbl-lt y y' prf xs₁) | gt | b | p | l₁ | eq | xs' = dbl-lt y x l₁ xs'
  insert-Sorted x (dbl-lt y y' prf xs₁) | gt | b | p | l₁ | gt | xs' = dbl-lt y y' prf xs'
  insert-Sorted x (dbl-eq y {xs} xs₁) with `RC x y | inspect (`RC x) y | dbl-lt {XC = `RC} x y {y  xs} | eq=>≡ x y | flip-RC x y | insert-Sorted x xs₁
  insert-Sorted x (dbl-eq y xs₁) | lt | _ | b | p | l | _ = b refl (dbl-eq y xs₁)
  insert-Sorted x (dbl-eq y xs₁) | eq | _ | b | p | l | _ rewrite p refl = dbl-eq y (dbl-eq y xs₁)
  insert-Sorted x (dbl-eq y xs₁) | gt | [ prf ] | b | p | l | ss  rewrite prf = dbl-eq y ss 

  sort-Sorted :  {n l}(V : Vec (Fin n) l)  Sorted `RC (`sort `RC V)
  sort-Sorted [] = []
  sort-Sorted (x  V) = insert-Sorted x (sort-Sorted V)

  RC-refl :  {i}(x : Fin i)  `RC x x  eq
  RC-refl zero = refl
  RC-refl (suc x) = RC-refl x

  STail :  {X l}{XC : Cmp X}{xs : Vec X (suc l)}  Sorted XC xs  Sorted XC (tail xs)
  STail (sing x) = []
  STail (dbl-lt x y x₁ T) = T
  STail (dbl-eq x T) = T

  module sproof {X}(XC : Cmp X)(XC-refl :  x  XC x x  eq)
     (eq≡ :  x y  XC x y  eq  x  y)
     (lt-trans :  x y z  XC x y  lt  XC y z  lt  XC x z  lt)
     (XC-flip :  x y  opposite (XC x y)  XC y x)
     where

    open import Data.Sum

    _≤X_ : X  X  
    x ≤X y = XC x y  lt  XC x y  eq

    ≤X-trans :  {x y z}  x ≤X y  y ≤X z  x ≤X z
    ≤X-trans (inj₁ x₁) (inj₁ x₂) = inj₁ (lt-trans _ _ _ x₁ x₂)
    ≤X-trans {_}{y}{z}(inj₁ x₁) (inj₂ y₁) rewrite eq≡ y z y₁ = inj₁ x₁
    ≤X-trans {x}{y} (inj₂ y₁) y≤z rewrite eq≡ x y y₁ = y≤z

    h≤t :  {n}{T : `Tree X (2 + n)}  Sorted XC T  head T ≤X head (tail T)
    h≤t (dbl-lt x y x₁ ST) = inj₁ (sym x₁)
    h≤t (dbl-eq x ST) rewrite XC-refl x = inj₂ refl

    head-p :  {n}{T : `Tree X (suc n)} i  Sorted XC T  head T ≤X `toFun T i
    head-p {T = T} zero ST rewrite XC-refl (head T) = inj₂ refl
    head-p {zero} (suc ()) ST
    head-p {suc n} (suc i) ST = ≤X-trans (h≤t ST) (head-p i (STail ST))

    toFun-p :  {n}{T : `Tree X n}{i j : Fin n}  i ≤F j  Sorted XC T  `toFun T i ≤X `toFun T j
    toFun-p {j = j} z≤i ST = head-p j ST
    toFun-p (s≤s i≤Fj) ST = toFun-p i≤Fj (STail ST)

    sort-proof :  {i}{T : `Tree X i}  Sorted XC T  Is-Mono `RC XC (`toFun T)
    sort-proof {T = T} T₁ zero zero rewrite XC-refl (head T) = _
    sort-proof T₁ zero (suc y) with toFun-p (z≤i {i = suc y}) T₁
    sort-proof T zero (suc y) | inj₁ x rewrite x = _
    sort-proof T zero (suc y) | inj₂ y₁ rewrite y₁ = _
    sort-proof {T = T} T₁ (suc x) zero with toFun-p (z≤i {i = suc x}) T₁ | XC-flip (head T) (`toFun (tail T) x)
    sort-proof T (suc x) zero | inj₁ x₁ | l rewrite x₁ | sym l = _
    sort-proof T (suc x) zero | inj₂ y | l rewrite y | sym l = _
    sort-proof T₁ (suc x) (suc y) = sort-proof (STail T₁) x y

  lt-trans-RC :  {i} (x y z : Fin i)  `RC x y  lt  `RC y z  lt  `RC x z  lt
  lt-trans-RC zero zero zero x<y y<z = y<z
  lt-trans-RC zero zero (suc z) x<y y<z = refl
  lt-trans-RC zero (suc y) zero x<y ()
  lt-trans-RC zero (suc y) (suc z) x<y y<z = refl
  lt-trans-RC (suc x) zero zero x<y y<z = x<y
  lt-trans-RC (suc x) zero (suc z) () y<z
  lt-trans-RC (suc x) (suc y) zero x<y y<z = y<z
  lt-trans-RC (suc x) (suc y) (suc z) x<y y<z = lt-trans-RC x y z x<y y<z

  `sort-mono :  {i}(T : `Tree (`Rep i) i)  Is-Mono `RC `RC (`toFun (`sort `RC T))
  `sort-mono T x y = sproof.sort-proof `RC RC-refl  x₁ y₁ x₂  eq=>≡ x₁ y₁ (sym x₂)) lt-trans-RC flip-RC (sort-Sorted T) x y



  module toNat n (f : Endo (Fin (suc n)))(f-inj : Is-Inj f)(f-mono : Is-Mono `RC `RC f) where
  
    open import Data.Nat.BoundedMonoInj-is-Id
    open import Data.Sum

    move-to-RC :  {n}{x y : Fin n}  x ≤F y  `RC x y  lt  `RC x y  eq
    move-to-RC {y = zero} z≤i = inj₂ refl
    move-to-RC {y = suc y} z≤i = inj₁ refl
    move-to-RC (s≤s x≤Fy) = move-to-RC x≤Fy

    move-from-RC :  {n}(x y : Fin n)  lt  `RC x y  eq  `RC x y  x ≤F y
    move-from-RC zero zero prf = z≤i
    move-from-RC zero (suc y) prf = z≤i
    move-from-RC (suc x) zero (inj₁ ())
    move-from-RC (suc x) zero (inj₂ ())
    move-from-RC (suc x) (suc y) prf = s≤s (move-from-RC x y prf)

    proper-mono :  {x y}  x ≤F y  f x ≤F f y
    proper-mono {x} {y} x≤Fy with `RC x y | `RC (f x) (f y) | move-to-RC x≤Fy | f-mono x y | move-from-RC (f x) (f y)
    proper-mono x≤Fy | .lt | lt | inj₁ refl | r4 | r5 = r5 (inj₁ refl)
    proper-mono x≤Fy | .lt | eq | inj₁ refl | r4 | r5 = r5 (inj₂ refl)
    proper-mono x≤Fy | .lt | gt | inj₁ refl | () | r5
    proper-mono x≤Fy | .eq | lt | inj₂ refl | () | r5
    proper-mono x≤Fy | .eq | eq | inj₂ refl | r4 | r5 = r5 (inj₂ refl)
    proper-mono x≤Fy | .eq | gt | inj₂ refl | () | r5

    getFrom :  n    Fin (suc n)
    getFrom zero i = zero
    getFrom (suc n₁) zero = zero
    getFrom (suc n₁) (suc i) = suc (getFrom n₁ i)

    getInj : {n x y : }  x  n  y  n  getFrom n x  getFrom n y  x  y
    getInj z≤n z≤n prf = refl
    getInj z≤n (s≤s y≤n) ()
    getInj (s≤s x≤n) z≤n ()
    getInj (s≤s x≤n) (s≤s y≤n) prf rewrite (getInj x≤n y≤n (suc-inj prf)) = refl

    getMono : {n x y : }  x  y  y  n  getFrom n x ≤F getFrom n y
    getMono z≤n z≤n = ≤F-refl _
    getMono z≤n (s≤s y≤n) = z≤i
    getMono (s≤s x≤y) (s≤s y≤n) = s≤s (getMono x≤y y≤n)

    forget :  {n}  Fin n  
    forget zero = zero
    forget (suc i) = suc (forget i)

    forgetInj :  {n}{i j : Fin n}  forget i  forget j  i  j
    forgetInj {.(suc _)} {zero} {zero} prf = refl
    forgetInj {.(suc _)} {zero} {suc j} ()
    forgetInj {.(suc _)} {suc i} {zero} ()
    forgetInj {.(suc _)} {suc i} {suc j} prf rewrite forgetInj (nsuc-inj prf) = refl

    getForget :  {n}(i : Fin (suc n))  getFrom n (forget i)  i
    getForget {zero} zero = refl
    getForget {zero} (suc ())
    getForget {suc n₁} zero = refl
    getForget {suc n₁} (suc i) rewrite getForget i = refl


    forget< :  {n}  (i : Fin n)  forget i < n
    forget< {zero} ()
    forget< {suc n₁} zero = s≤s z≤n
    forget< {suc n₁} (suc i) = s≤s (forget< i)

    forget-mono :  {n}{i j : Fin n}  i ≤F j  forget i  forget j
    forget-mono z≤i = z≤n
    forget-mono (s≤s i≤F) = s≤s (forget-mono i≤F)

    fn : Endo 
    fn = forget  f  getFrom n

    return : f  getFrom n  fn  forget
    return x rewrite getForget x | getForget (f x) = refl

    fn-monotone : Monotone (suc n) fn
    fn-monotone {x} {y} x≤y (s≤s y≤n) = forget-mono (proper-mono (getMono x≤y y≤n))

    fn-inj : IsInj (suc n) fn
    fn-inj {x}{y} (s≤s sx≤sn) (s≤s sy≤sn) prf = getInj sx≤sn sy≤sn (f-inj (getFrom n x) (getFrom n y) (forgetInj prf))

    fn-bounded : Bounded (suc n) fn
    fn-bounded x _ = forget< (f (getFrom n x))

    fn≗id :  x  x < (suc n)  fn x  x
    fn≗id = M.is-id fn fn-monotone fn-inj fn-bounded 

    f≗id : f  id
    f≗id x rewrite return x | fn≗id (forget x) (forget< x) = getForget x

  fin-view :  {n}  (i : Fin (suc n))  Fin-View i
  fin-view {zero} zero = max
  fin-view {zero} (suc ())
  fin-view {suc n} zero = inject _
  fin-view {suc n} (suc i) with fin-view i
  fin-view {suc n} (suc .(fromℕ n)) | max = max
  fin-view {suc n} (suc .(inject₁ i)) | inject i = inject _

  absurd : {X : }  .  X
  absurd ()

  drop₁ :  {n}  (i : Fin (suc n))  .(i  fromℕ n)  Fin n
  drop₁ i neq with fin-view i
  drop₁ {n} .(fromℕ n) neq | max = absurd (neq refl)
  drop₁ .(inject₁ i) neq | inject i = i

  drop₁→inject₁ :  {n}(i : Fin (suc n))(j : Fin n).(p : i  fromℕ n)  drop₁ i p  j  i  inject₁ j
  drop₁→inject₁ i j p q with fin-view i
  drop₁→inject₁ {n} .(fromℕ n) j p q | max = absurd (p refl)
  drop₁→inject₁ .(inject₁ i) j p q | inject i = cong inject₁ q


  `mono-inj→id : ∀{i}(f : Endo (`Rep i))  Is-Inj f  Is-Mono `RC `RC f  f  id
  `mono-inj→id {zero}  = λ f x x₁ ()
  `mono-inj→id {suc i} = toNat.f≗id i 


  interface : Interface
  interface = record 
    { Ix            = `Ix
    ; Rep           = `Rep
    ; Syn           = `Syn
    ; Tree          = `Tree
    ; fromFun       = `fromFun
    ; toFun         = `toFun
    ; toFun∘fromFun = `toFun∘fromFun
    ; evalArg       = `evalArg
    ; evalTree      = `evalTree
    ; eval-proof    = `eval-proof
    ; inv           = `inv
    ; inv-proof     = `inv-proof
    ; RC            = `RC
    ; sort          = `sort
    ; sort-syn      = `sort-syn
    ; sort-proof    = `sort-proof
    ; sort-mono     = `sort-mono
    ; mono-inj→id   = `mono-inj→id
    }

  count :  {n}  (Fin n  )  
  count {n} f = sum (tabulate f)

  count-ext :  {n}  (f g : Fin n  )  f  g  count f  count g
  count-ext {zero} f g f≗g = refl
  count-ext {suc n} f g f≗g rewrite f≗g zero | count-ext (f  suc) (g  suc) (f≗g  suc) = refl

  #⟨_⟩ :  {n}  (Fin n  𝟚)  
  #⟨ f  = count (𝟚▹ℕ  f)

  #-ext :  {n}  (f g : Fin n  𝟚)  f  g  #⟨ f   #⟨ g 
  #-ext f g f≗g = count-ext (𝟚▹ℕ  f) (𝟚▹ℕ  g) (cong 𝟚▹ℕ  f≗g)

  com-assoc :  x y z  x + (y + z)  y + (x + z)
  com-assoc x y z rewrite 
    sym (ℕ°.+-assoc x y z) |
    ℕ°.+-comm x y    |
    ℕ°.+-assoc y x z = refl
    
  syn-pres :  {n}(f : Fin n  )(S : `Syn n)
            count f  count (f  `evalArg S)
  syn-pres f `id = refl
  syn-pres f `swap = com-assoc (f zero) (f (suc zero)) (count  i  f (suc (suc i))))
  syn-pres f (`tail S) rewrite syn-pres (f  suc) S = refl
  syn-pres f (S `∘ S₁) rewrite syn-pres f S = syn-pres (f  `evalArg S) S₁

  count-perm :  {n}(f : Fin n  )(p : Endo (Fin n))  Is-Inj p
          count f  count (f  p)
  count-perm f p p-inj = trans (syn-pres f (sort-bij p)) (count-ext _ _ f∘eval≗f∘p)
   where
     open abs interface
     f∘eval≗f∘p : f  `evalArg (sort-bij p)  f  p
     f∘eval≗f∘p x rewrite thm p p-inj x = refl


  #-perm :  {n}(f : Fin n  𝟚)(p : Endo (Fin n))  Is-Inj p
          #⟨ f   #⟨ f  p 
  #-perm f p p-inj = count-perm (𝟚▹ℕ  f) p p-inj

  test : `Syn 8
  test = abs.sort-bij interface  x  `evalArg (`tail `swap) x)